Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.21.22280205

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) treated with B-cell pathway inhibitors and anti-CD20 antibodies exhibit low humoral response rate (RR) following SARS-CoV-2 vaccination. To investigate the relationship between the initial transcriptional response to vaccination with ensuing B and T cell immune responses, we performed a comprehensive immune transcriptome analysis flanked by antibody and T cell assays in peripheral blood prospectively collected from 15 CLL/SLL patients vaccinated with heterologous BNT162b2/ChAdOx1 with follow up at a single institution. The two-dose antibody RR was 40% increasing to 53% after booster. Patients on BTKi, venetoclax ± anti-CD20 antibody within 12 months of vaccination responded less well than those under BTKi alone. The two-dose T cell RR was 80% increasing to 93% after booster. Transcriptome studies revealed that seven patients showed interferon-mediated signaling activation within 2 days and one at 7 days after vaccination. Increasing counts of COVID-19 specific IGHV genes correlated with B-cell reconstitution and improved humoral RR. T cell responses in CLL patients appeared after vaccination regardless of treatment status. A higher humoral RR was associated with BTKi treatment and B-cell reconstitution. Boosting was particularly effective when intrinsic immune status was improved by CLL-treatment.


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3963559

ABSTRACT

Introduction: As vaccination against SARS-CoV-2 progresses rapidly around the world, reliable detection of SARS-CoV-2 specific neutralizing antibodies (NAb) has become an indispensable component of serological diagnostics. We evaluated the performance of four commercially available tests, i.e. two lateral flow assays (Coris BioConcept COVID-19 Sero NP/RBD and Concile InfectCheck COVID-19 NAb) and two surrogate ELISA (sELISA) tests (EUROIMMUN SARS-CoV-2 NeutraLISA and AdipoGen SARS-CoV-2 Neutralizing Antibodies Detection Kit) in comparison with an in-house SARS-CoV-2 micro neutralization test as reference. Methods: A total of 334 sera were tested, including 30 samples collected prior to the emergence of SARS-CoV-2, 128 sera from convalescent patients as well as 176 sera from partially or fully vaccinated individuals.Results: The overall sensitivity of LFAs differed and was 71.6% for the Coris and 98.4% for the Concile. In contrast, overall sensitivity of the NeutraLISA was 86% and 98% for the AdipoGen. All test showed the highest sensitivity when testing samples from fully vaccinated individuals with both sELISA achieving 100% sensitivity. Overall specificity was 89.3% for the Coris and only 58.3% for the Concile. Similarly significant differences were observed for both sELISA, with an overall specificity of 82.1% for the NeutraLISA and only 54.8% for the AdipoGen. All tests showed a 100% specificity when testing negative control samples while specificities were lowest when testing samples from only partially vaccinated individuals. Conclusion: Our findings support the potential use of the Concile LFA and both sELISA for the detection of NAbs against SARS-CoV-2, especially to determine NAb levels after complete vaccination.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-846197.v1

ABSTRACT

​​Since its recent zoonotic spill-over severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is constantly adapting to the human host as illustrated by the emergence of variants of concern with increased transmissibility and immune evasion. Prolonged replication in immunosuppressed individuals and evasion from spike-specific antibodies is known to drive intra-host SARS-CoV-2 evolution. Here we show for the first time the major role of CD8 T cells in SARS-CoV-2 evolution. In a patient with chronic, ultimately fatal infection, we observed three spike mutations that prevented neutralisation by convalescent plasma therapy. Moreover, at least four mutations in non-spike proteins emerged that hampered CD8 T-cell recognition of mutant epitopes, two of these occurred before spike mutations. A comparison with worldwide sequencing data showed that several of these T-cell escape mutations had emerged independently as homoplasies in multiple circulating lineages. We propose that human leukocyte antigen class I contributes to shaping the evolutionary landscape of SARS-CoV-2.


Subject(s)
Coronavirus Infections
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3852736

ABSTRACT

Abstract: Spike-specific antibodies contribute significantly to the neutralizing activity against SARS-CoV-2 and are important for the therapeutic effect of convalescent plasma. B.1.1.7 is a recently emerged variant of SARS-CoV-2 that has several mutations in the gene encoding for the spike-protein. To assess the potential effect these mutations could have on the neutralizing efficacy of antibodies, we evaluated 96 serum samples from convalescent plasma donors collected before the first occurrence of B.1.1.7 and tested their neutralizing effect on wild-type SARS-CoV-2 and B.1.1.7. We found that B.1.1.7 is more resistant to neutralization by convalescent plasma from patients infected with wild-type SARS-CoV-2 with an overall decrease in neutralizing activity of 47.7%. Thus, the neutralizing effect of convalescent plasma should be determined against the major circulating virus clades whenever possible to ensure the best possible therapeutic effect.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21257021

ABSTRACT

Background The detection of SARS-CoV-2 with rapid diagnostic tests has become an important tool to identify infected people and break infection chains. These rapid diagnostic tests are usually based on antigen detection in a lateral flow approach. Aims & Methods While for PCR diagnostics the validation of a PCR assay is well established, for antigen tests e.g. rapid diagnostic tests there is no common validation strategy. Here we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from approximately 1.1 × 10 9 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 rapid diagnostic tests in up to 6 laboratories. Results Our results show that there is significant variation in the detection limits and the clinical sensitivity of different rapid diagnostic tests. We conclude that the best rapid diagnostic tests can be applied to reliably identify infectious individuals who are presenting with SARS-CoV-2 loads correlated to 10 6 genome copies per mL of specimen. Infected individuals displaying SARS-CoV-2 genome loads corresponding to less than 10 6 genome copies per mL will be identified by only some rapid diagnostics tests, while many tests miss these viral loads to a large extent. Conclusions Sensitive RDTs can be applied to identify infectious individuals with high viral loads, but not to identify infected individuals.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.16.440101

ABSTRACT

ABSTRACT TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly generate human monoclonal antibodies. After immunizing these mice against the spike protein of SARS-CoV-2, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralized SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of neutralizing antibodies binds to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2 induced weight loss. Thus, we report two clusters of potent non-competing SARS-CoV-2 neutralizing antibodies providing potential candidates for therapy and prophylaxis of COVID-19. The study further supports the use of transgenic animals with human immunoglobulin gene repertoires in pandemic preparedness initiatives.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.19.21252080

ABSTRACT

Background Quantitative serological assays detecting response to SARS-CoV-2 infection are urgently needed to quantify immunity. This study analyzed the performance and correlation of two independent quantitative anti-S1 assays in oligo-/asymptomatic individuals from a previously characterized population-based cohort. Methods A total of 362 samples included 108 from individuals who had viral RNA detected in pharyngeal swabs, 111 negative controls and 143 samples with positive serology but not confirmed by RT-PCR. Blood plasma was tested with quantitative assays Euroimmun Anti-SARS-CoV-2 QuantiVac ELISA (IgG) (EI-S1-IgG-quant) and Roche Elecsys ® Anti-SARS-CoV-2 CoV-2 S (Ro-RBD-Ig-quant), which were compared with each other and with confirmatory tests, including wild-type virus micro-neutralization (NT) and GenScript ® cPass™. Results were analyzed using square roots R of coefficients of determination for association among continuous variables and non-parametric tests for paired comparisons. Results Quantitative anti-S1 serology correlated well with each other (96%/97% for true-positives and true-negatives, respectively). Antibody titers decreased over time (from <30 days to >240 days after initial positive RT-PCR). Agreement with GenScript-cPass was 96%/99% for true-positives and true-negatives, respectively, for Ro-RBD-Ig-quant and 93%/97% for EI-S1-IgG-quant. Ro-RBD-Ig-quant allowed a distinct separation between positive and negative values, and less non-specific reactivity compared with EI-S1-IgG-quant. Raw values (with 95% CI) ≥28.7 U/mL (22.6–36.4) for Ro-RBD-Ig-quant and ≥49.8 U/mL (43.4–57.1) for EI-S1-IgG-quant predicted virus neutralization >1:5 in 95% of cases. Conclusions Both quantitative anti-S1 assays, Ro-RBD-Ig-quant and EI-S1-IgG-quant, may replace direct neutralization assays in quantitative measurement of immune protection against SARS-CoV-2 in certain circumstances in the future. Key points Two quantitative anti-S1 assays showed similar performance and a high level of agreement with direct virus neutralization and surrogate neutralization tests, arguing for their utility in quantifying immune protection against SARS-CoV-2.


Subject(s)
COVID-19
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3745128

ABSTRACT

Background: Population-based studies investigating the dynamics of the SARS-CoV-2 pandemic are needed. Here, we report on baseline findings from April through June 2020 of a prospective cohort study in Munich, Germany.Methods: We drew a representative sample of 2994 private households. The 5313 participating household members 14 years and older completed questionnaires and provided blood samples. SARS-CoV-2 seropositivity was defined as Roche N pan-Ig ≥ 0·4218. We adjusted the prevalence for the sampling design, sensitivity, and specificity. We investigated risk factors for SARS-CoV-2 seropositivity and geospatial transmission patterns by generalized linear mixed models and permutation tests.Findings: Seropositivity for SARS-CoV-2 specific antibodies was 1·82% (95% confidence interval (CI) 1·28-2·37%) as compared to 0·46% PCR-positive cases officially registered in Munich. Loss of the sense of smell or taste was associated with seropositivity (odds ratio (OR) 47·4; 95% CI 7·2-307·0) and infections clustered within households. Participants suffering from respiratory allergies (OR 2·7; 95% CI 0·9-8·6) and working in high-risk jobs (OR 2·0; 95% CI 0·5-6·7) showed non-significantly increased odds for SARS-CoV-2 seropositivity.Interpretation: Applying a validated assay, we demonstrate a low SARS-CoV-2 seroprevalence in the Munich population 14 years and older towards the end of the first pandemic wave. However, we noted official sub-registration at this early stage of the pandemic.Funding: Bavarian State Ministry of Science and the Arts, University Hospital of LMU Munich, Helmholtz Centre Munich, University of Bonn, and University of Bielefeld.Declaration of Interests: FF, TF, DM, LO, and VT report grants from the Bavarian State Ministry of Science and the Arts during the conduct oft he study. TF reports grants from the University Hospital of LMU Munich, Helmholtz Center Munich, University of Bonn, University of Bielefeld, and German Ministry for Education and Research during the conduct of the study. JH reports grants from the German Federal Ministry of Education and Research during the conduct of the study. MH and AW report personal fees and non-financial support, LO and MP report non-financial support from Roche Diagnostics. MH, LO, MP, and AW report non-financial support from Euroimmun, Viramed, and Mikrogen. MH, MP, and AW report grants, non-financial support, and other from German Center for Infection Research (DZIF). FF, MH, LO, MP, VT, and AW report grants and non-financial support from the Government of Bavaria. MH, LO, MP, and AW report non-financial support from BMW, Mercedes Benz, Munich Police, and Accenture. MH and AW report personal fees and non-financial support from Dr. Box Betrobox during the conduct of the study. LO and MP report non-financial support from Dr. Box Betrobox. MH and AW have a patent Sample System for Sputum Diagnostics of SARS-CoV-2 pending. DM reports to be a a sub-investigator on a Phase I SARS-CoV-2 vaccine trial and on a Phase I rabies vaccine trial, both sponsored by CureVac AG. MP and AW report non-financial support from Dr. Becker MVZ. VT reports support from CureVac AG outside the submitted work. AW reports personal fees and other from Haeraeus Sensors. AW reports non-financial support from Bruker Daltronics outside the submitted work. AW is involved in other different patents and companies not in relation with the serology of SARS-CoV-2. All other authors report nothing to disclose.Ethics Approval Statement: Prior to study initiation, this study had been approved by therespective Institutional Review Board.


Subject(s)
COVID-19 , HIV Seropositivity , Myotonic Dystrophy , Myotonia Congenita
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3716021

ABSTRACT

Introduction: Reliable methods for the detection of SARS-CoV-2 neutralizing antibodies (NAbs) are essential for the evaluation of vaccine candidates and for the selection of convalescent plasma donors. Virus neutralization tests (NTs) are the gold standard for the detection and quantification of NAbs, but they are complex and require BSL3 facilities. In contrast, surrogate enzyme-linked immunosorbent assays (sELISA) offer the possibility of high-throughput testing under standard laboratory safety conditions. In this study, we investigated two commercial sELISA kits (GenScript, AdipoGen) designed for the detection of SARS-CoV-2 NAbs.Methods: 276 plasma samples were screened using commercial IgG-ELISA and NAbs titers were determined by micro-neutralization test (micro-NT). In addition, all samples were tested in both sELISA. Sensitivity and specificity for both sELISA were determined in comparison to the micro-NT results.Results: 57% of the samples were positive for SARS-CoV-2 NAbs in micro-NT, while 43% tested negative. Comparison with micro-NT results showed a sensitivity of 98.2% and a specificity of 69.5% for the GenScript ELISA. The AdipoGen ELISA had a sensitivity of 83.5% and a specificity of 97.8%. False negative results were obtained mainly on samples with low NAbs titers.Conclusion: Both sELISA were able to qualitatively detect NAbs in plasma samples. Sensitivity and specificity differed between sELISA with GenScript superior in sensitivity and AdipoGen superior in specificity. Both sELISA were unable to quantify NAbs, thus neither of them can completely replace conventional NTs. However, in a two-step diagnostic algorithm, AdipoGen could potentially replace NT as a subsequent confirmatory test due to its high specificity.

10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.17.156455

ABSTRACT

The sudden global emergence of SARS-CoV-2 urgently requires an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several omics studies have extended our knowledge of COVID-19 pathophysiology, including some focused on proteomic aspects1–3. To understand how SARS-CoV-2 and related coronaviruses manipulate the host we here characterized interactome, proteome and signaling processes in a systems-wide manner. This identified connections between the corresponding cellular events, revealed functional effects of the individual viral proteins and put these findings into the context of host signaling pathways. We investigated the closely related SARS-CoV-2 and SARS-CoV viruses as well as the influence of SARS-CoV-2 on transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed relationships between the perturbations taking place upon SARS-CoV-2 infection at different layers and identified unique and common molecular mechanisms of SARS coronaviruses. The results highlight the functionality of individual proteins as well as vulnerability hotspots of SARS-CoV-2, which we targeted with clinically approved drugs. We exemplify this by identification of kinase inhibitors as well as MMPase inhibitors with significant antiviral effects against SARS-CoV-2.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
11.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3551335

ABSTRACT

Background: In December 2019, a newly identified coronavirus (SARS-CoV-2) emerged in Wuhan, China, causing respiratory disease (COVID-19) presenting with fever, cough and frequently pneumonia. WHO has set the strategic objective to interrupt virus spread of SARS-CoV-2 worldwide. An outbreak in Bavaria, Germany, starting end of January 2020, gave the opportunity to study transmission events, incubation period, and attack rates.Methods: A case was defined as a person with SARS-CoV-2-infection confirmed by PCR. Case interviews were conducted to i) describe timing of onset and nature of symptoms, ii) identify and classify contacts. High-risk contacts were actively followed and monitored for symptoms, low-risk contacts were tested upon self-reporting of symptoms. Whole genome sequencing was used to confirm epidemiological links and clarify transmission events where contact histories were ambiguous; integration with epidemiological data enabled precise reconstruction of exposure events and incubation periods.Results: Case #0 was a Chinese person who visited Germany for professional reasons. Sixteen subsequent cases emerged in four transmission generations. Signature mutations occurred upon foundation of generation 2, as well as in one patient pertaining to generation 4. Median incubation period and serial interval were 4.0 days, respectively. Transmissions occurred frequently pre-symptomatic, at day of symptom onset and during prodromal phase (symptoms other than fever and cough for ≥1 day at beginning of illness phase). Attack rates were 75% among members of a household cluster in common isolation, 10% among household contacts only together until isolation of case, and 5% among non-household high-risk contacts.Conclusions: While our cases present with predominately mild, non-specific symptoms, infectiousness before or on the day of symptom onset or during prodromal phase is substantial. Additionally, the incubation period is often very short, false-negative tests may occur. Although the outbreak was apparently controlled, successful long-term and global containment of COVID-19 may be difficult to achieve.Funding Statement: Contributions by C. D. and V. M. C. were funded by the German Ministry of Health (Konsiliarlabor für Coronaviren), as well as the German Center for Infection Research. S.B., T.W., K.P., N.M, and T.S.B. are fellows of the ECDC Fellowship Programme, supported financially by the European Centre for Disease Prevention and Control (ECDC).Declaration of Interests: The authors declared no competing interest. Ethics Approval Statement: The outbreak investigation was conducted as part of the authoritative, official tasks of the county health departments as well as the state health department of the Bavarian Health and Food Safety Authority, supported by the Robert Koch Institute. As conducted in response to a public health emergency, this study was exempt from institutional review board approval.


Subject(s)
COVID-19 , Fever , Pneumonia , Protein S Deficiency
SELECTION OF CITATIONS
SEARCH DETAIL